
Backend Development
SWE 432, Fall 2016

Design and Implementation of Software for the Web

LaToza/Bell GMU SWE 432 Fall 2016 2

Show & Tell

http://www.nytimes.com/interactive/2016/upshot/presidential-polls-forecast.html

Sparklines in NYT

http://www.nytimes.com/interactive/2016/upshot/presidential-polls-forecast.html

LaToza/Bell GMU SWE 432 Fall 2016

Today
• Why do we need backend programming?
• How can/should we structure those backends?
• Node.JS

3

For further reading:
https://nodejs.org (Docs + Examples)
https://www.npmjs.com (Docs + Examples)
https://firebase.google.com/docs/server/setup

https://nodejs.org
https://www.npmjs.com
https://firebase.google.com/docs/server/setup

LaToza/Bell GMU SWE 432 Fall 2016

Why we need backends
• Security: SOME part of our code needs to be “trusted”

• Validation, security, etc. that we don’t want to allow
users to bypass

• Performance:
• Avoid duplicating computation (do it once and

cache)
• Do heavy computation on more powerful machines
• Do data-intensive computation “nearer” to the data

• Compatibility:
• Can bring some dynamic behavior without requiring

much JS support

4

LaToza/Bell GMU SWE 432 Fall 2016 5

Dynamic Web Apps

Web “Front End”

“Back End”

HTML CSS JavaScript

React
What th

e user in
teracts with

What th
e fro

nt end interacts with

Firebase Some
other API

Presentation
Some logic

Data storage
Some other logic

LaToza/Bell GMU SWE 432 Fall 2016 6

Where do we put the logic?
Web “Front End”

HTML CSS JavaScript

React

“Back End”

Firebase Some other
API

Presentation

Some logic

Data storage

Some other logic

What th
e user in

teracts with

What th
e fro

nt end interacts with

Frontend
Pros

Very responsive (low latency)

Cons
Security
Performance
Unable to share between front-ends

Backend
Pros

Easy to refactor between multiple
clients

Logic is hidden from users (good for
security, compatibility, and intensive
computation)

Cons
Interactions require a round-trip to

server

LaToza/Bell GMU SWE 432 Fall 2016

Why Trust Matters
• Example: Transaction app
function updateBalance(user, amountToAdd) 
{  
 user.balance = user.balance + amountToAdd; 
 fireRef.child(user.username).child("balance").set(user.balance);  
}

• What’s wrong?
• How do you fix that?

7

LaToza/Bell GMU SWE 432 Fall 2016 8

Dynamic Web Apps

Web “Front End”

“Back End”

HTML CSS JavaScript

React

Firebase Some
other API

Presentation
Some logic

Data storage
Some other logic

LaToza/Bell GMU SWE 432 Fall 2016 9

Dynamic Web Apps

Web “Front End”

“Back End”

HTML CSS JavaScript

React

Firebase Some
other API

Presentation
Some logic

Data storage
Some other logicOur own

backend

LaToza/Bell GMU SWE 432 Fall 2016

What does our backend look like?

10

Our own backend

Connection to
FrontendWeb “Front End”

AJAX

Logic

Persistent Data

LaToza/Bell GMU SWE 432 Fall 2016

The “good” old days of backends

11

HTTP Request
GET	/myApplicationEndpoint	HTTP/1.1	
Host:	cs.gmu.edu	
Accept:	text/html

web server

HTTP Response
HTTP/1.1	200	OK	
Content-Type:	text/html;	charset=UTF-8	

<html><head>...

Runs a program

Web Server
Application

My
Application
Backend

Give	me	/myApplicationEndpoint

Here’s	some	text	to	send	back

Does whatever it wants

What’s wrong with this
picture?

LaToza/Bell GMU SWE 432 Fall 2016

History of Backend Development

• In the beginning, you wrote whatever you wanted
using whatever language you wanted and whatever
framework you wanted

• Then… PHP and ASP
• Languages “designed” for writing backends
• Encouraged spaghetti code
• A lot of the web was built on this

• A whole lot of other languages were also springing
up in the 90’s…
• Ruby, Python, JSP

13

LaToza/Bell GMU SWE 432 Fall 2016

Backend Spaghetti

14

LaToza/Bell GMU SWE 432 Fall 2016 15

De-Spaghettification

Lecture 10

Our own backend

Logic

Persistent Data

Connection to
Frontend View

Controller

Model

LaToza/Bell GMU SWE 432 Fall 2016

MVC & Backend Servers
• There are a ton of backend frameworks that support

MVC
• SailsJS, Ruby on Rails, PHP Symfony, Python

Django, ASP.NET, EJB…
• Old days: View was server-generated HTML
• New days: View is an API
• Today we’ll talk about Node.JS backend

development
• We will not talk about making MVC backends and

will not require you to do so

16

LaToza/Bell GMU SWE 432 Fall 2016

Node.JS
• We’re going to write backends with Node.JS
• Why use Node?

• Easy to get into after learning JS (it’s JS)
• Event based: really efficient for sending lots of

quick updates to lots of clients
• Why not use Node?

• Bad for CPU heavy stuff
• It’s relatively immature

17

LaToza/Bell GMU SWE 432 Fall 2016

Node.JS
• Node.JS is a runtime that lets you run JS outside of a

browser
• Node.JS has a very large ecosystem of packages

• Example: express (web server), nodemon
(automatically restarts your server when it changes)

• Must be downloaded and installed  
 https://nodejs.org/en/

• We recommend v4.5.0 LTS (LTS -> Long Term
Support, designed to be super stable)

18

https://nodejs.org/en/

LaToza/Bell GMU SWE 432 Fall 2016

More on Modules
• How have we been using libraries so far?
<script src="https://fb.me/react-15.0.0.js"></script>  
<script src=“https://fb.me/react-dom-15.0.0.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/browser.min.js"></
script>

• What’s wrong with this?
• No standard format to say:

• What’s the name of the module?
• What’s the version of the module?
• Where do I find it?

• Ideally: Just say “Give me React 15 and everything I need to
make it work!”

• This is slowly being fixed for ES6 and on… but Node has a
great (non-standardized) approach we can use for backend
development

19

LaToza/Bell GMU SWE 432 Fall 2016

A better way for modules
• Describe what your modules are
• Create a central repository of those modules
• Make a utility that can automatically find and

include those modules

20

Your app Assumes dependencies magically exist

Dependencies
Configuration Declares what modules you need

Package
Manager Provides the modules to your app

M
od

ul
es

 th
at

 m
ag

ic
al

ly
 a

pp
ea

r

LaToza/Bell GMU SWE 432 Fall 2016

NPM: Not an acronym, but the Node
Package Manager

• Bring order to our modules and
dependencies

• Declarative approach:
• “My app is called helloworld”
• “It is version 1”
• You can run it by saying “node

index.js”
• “I need express, the most

recent version is fine”
• Config is stored in json -

specifically package.json

21

{  
 "name": "helloworld",  
 "version": "1.0.0",  
 "description": "",  
 "main": "index.js",  
 "scripts": { 
 "test": "echo \"Error: no test
specified\" && exit 1" 
 }, 
 "author": "",  
 "license": "ISC",  
 "dependencies": { 
 "express": "^4.14.0" 
 }  
}

Generated by npm commands:

LaToza/Bell GMU SWE 432 Fall 2016

Using NPM
• Your “project” is a directory which contains a special file,

package.json
• Everything that is going to be in your project goes in this directory
• Step 1: Create NPM project  

 npm init
• Step 2: Declare dependencies  

 npm install <packagename> --save
• Step 3: Use modules in your app  

 var myPkg = require(“packagename”)
• Do NOT include node_modules in your git repo! Instead, just do  

 node install

• This will download and install the modules on your machine
given the existing config!

22

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Hello World Server

23

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

var	express	=	require('express');	
var	app	=	express();	
var	port	=	process.env.port	||	3000;		
app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Tells NPM that you want to use
express, and to save that in your

project config

Runs your app

http://localhost:3000

LaToza/Bell GMU SWE 432 Fall 2016

Demo: Hello World Server

24

1: Make a directory, myapp

2: Enter that directory, type npm	init (accept all defaults)

3: Type npm	install	express	--save

4: Create text file app.js:

5: Type node	app.js
6: Point your browser to http://localhost:3000

Creates a configuration file
for your project

Runs your app

Tells NPM that you want to use
express, and to save that in your

project config

var	express	=	require(‘express');	

var	app	=	express();	

var	port	=	process.env.port	||	3000;		

app.get('/',	function	(req,	res)	{	
		res.send('Hello	World!');	
});	

app.listen(port,	function	()	{	
		console.log('Example	app	listening	on	port'	+	port);	
});

Import the module express

Create a new instance of express

Decide what port we want express to listen on

Create a callback for express to call when we have a “get” request to “/“. That
callback has access to the request (req) and response (res).

Tell our new instance of express to listen on port, and print to the console once it
starts successfully

http://localhost:3000

LaToza/Bell GMU SWE 432 Fall 2016

Express
• Basic setup:

• For get:
app.get("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• For post:
app.post("/somePath", function(req, res){ 
 //Read stuff from req, then call res.send(myResponse) 
});

• Serving static files:
app.use(express.static('myFileWithStaticFiles'));

• Make sure to declare this *last*
• Additional helpful module - bodyParser (for reading

POST data)

25

Putting it together:
Firebase + Node

LaToza/Bell GMU SWE 432 Fall 2016

Moving Firebase into Node
• General rule:

• If you set your database to be writeable by
everyone… then make sure NOBODY has your
private key

27

In our security lecture we’ll talk about having some data writable through
the web app directly and some only through node. For now, we’ll talk
about the simplest case: Only allow writes through our node backend.

LaToza/Bell GMU SWE 432 Fall 2016

Firebase + Node
• Step 1: Create a special access key for our Node app

to use to access our database
• This key will distinguish our node app from the web app
• Now you can keep publishing your API key, but have a

private key that you never publish publicly
• https://firebase.google.com/docs/server/setup
 1 Create a Firebase project in the Firebase console, if you don't already have one. If you already have an existing Google project

associated with your app, click Import Google Project. Otherwise, click Create New Project.
2 Click settings and select Permissions.
3 Select Service accounts from the menu on the left.
4 Click Create service account.

a Enter a name for your service account. You can optionally customize the ID from the one automatically generated from
the name.

b Choose Project > Editor from the Role dropdown.
c Select Furnish a new private key and leave the Key type as JSON.
d Leave Enable Google Apps Domain-wide Delegation unselected.
e Click Create.

28

https://firebase.google.com/docs/server/setup
https://firebase.google.com/console/

LaToza/Bell GMU SWE 432 Fall 2016

Firebase + Node
• Step 2: Configure our database to allow writes from

ONLY clients that have authenticated with a private
key

• Database -> Rules -> Set .write to be “auth != null”

29

LaToza/Bell GMU SWE 432 Fall 2016

Firebase + Node
• Step 3: Declare our dependency on firebase

• In our project directory, run:  
 npm install firebase --save

• In our app, write:
• var firebase = require("firebase");

• Step 4: Copy our downloaded private key (step 1)
to our directory and configure Firebase to connect
with it

30

Demo: Firebase +
NodeJS

LaToza/Bell GMU SWE 432 Fall 2016

What’s to come?
• How do we create structured APIs?
• How do we maintain some state between our

backend and frontend?
• Privacy & Security
• Architecting many services together
• Deploying our backend services

32

